kernel$42267$ - перевод на итальянский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

kernel$42267$ - перевод на итальянский

CLASS OF ALGORITHMS FOR PATTERN ANALYSIS
Kernel trick; Kernel machine; Kernel Method; Kernel Methods; Kernel machines; Kernel Machines; Kernel methods

kernel      
n. nucleo; seme; importanza; (inform.) centro, parte del sistema di avviamento responsabile delle componenti fisiche di base
cocoa beans         
  • Harvesting in Cameroon
  • Aztec sculpture with pod
  • alt=Beans drying in the sun
  • frameless
  • alt=Boy collecting beans after drying
  • Press cake of the paste
  • alt=Close-up of drying beans
  • A roasted bean, the papery skin rubbed loose
  • Structure of [[theobromine]] ([[IUPAC]] name: 3,7-dimethyl-1''H''-purine-2,6-dione)
  • The three main varieties: Forastero, Trinitario, and Criollo
DRIED AND FULLY FERMENTED FATTY SEED OF THEOBROMA CACAO
Cacao bean; Cocoa beans; Cocoa nib; Cacao nib; Cocoa-nut; Cocoa Beans; Criollo (cocoa bean); Cacao nibs; Trinitario (cocoa bean); Forastero (cocoa bean); Cacao seed; Cocoa seed; Cocoa kernel; Cacao kernel; Sustainable cocoa
semi di cacao
seed coat         
  • Diagram of the internal structure of a [[dicot]] seed and embryo: (a) seed coat, (b) [[endosperm]], (c) [[cotyledon]], (d) [[hypocotyl]]
  • Comparison of [[monocotyledons]] and [[dicotyledons]]
  • The parts of a [[bean]] seed (a [[dicot]]), showing the seed coat and [[embryo]]
  • The massive [[fruit]] of the [[coco de mer]]
  • The inside of a ''[[Ginkgo]]'' seed, showing a well-developed embryo, nutritive tissue ([[megagametophyte]]), and a bit of the surrounding seed coat
  • doi-access=free}}</ref>
  • The seed pod of [[milkweed]] (''Asclepias syriaca'')
  • Scutellum]] B. [[Cotyledon]] C. Hilum D. Plumule E. Radicle F. [[Endosperm]]
  • Plant ovules: Gymnosperm ovule on left, angiosperm ovule (inside ovary) on right
  • ''[[Phaseolus vulgaris]]'' (common bean or green bean) seeds are diverse in size, shape, and color.
  • Seed coat of pomegranate
  • '''Stages of seed development''':

{{Col-begin}}
{{Col-break}}
 '''I''' Zygote<br />
 '''II''' Proembryo<br />
'''III''' Globular
 {{Col-break}}
'''IV'''  Heart<br />
'''V'''  Torpedo<br />
'''VI'''  Mature Embryo
{{col-end}}
'''Key''': ''1. Endosperm 2. Zygote 3. Embryo 4. Suspensor 5. Cotyledons 6. Shoot Apical Meristem 7. Root Apical Meristem 8. Radicle 9. Hypocotyl 10. Epicotyl 11. Seed Coat''
  • A collection of various vegetable and herb seeds
  • Germinating [[sunflower]] seedlings
  • Dandelion seeds are contained within [[achene]]s, which can be carried long distances by the wind.
EMBRYONIC PLANT ENCLOSED IN A PROTECTIVE OUTER COVERING (SEED COAT)
Kernel (seed); Seeds; Seed coat; Seedcoat; Seed-coat; Agricultural seeds; Seed packet; Semination; Testa (botany); Seed science; Medium-sized seeds; Endotegmen; Seed (agriculture); Reniform seed
rivestimento del seme

Определение

kernel
(Note: NOT "kernal"). 1. <operating system> The essential part of Unix or other operating systems, responsible for resource allocation, low-level hardware interfaces, security etc. See also microkernel. 2. <language> An essential subset of a programming language, in terms of which other constructs are (or could be) defined. Also known as a core language. (1996-06-07)

Википедия

Kernel method

In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). Kernel methods are types of algorithms that are used for pattern analysis. These methods involve using linear classifiers to solve nonlinear problems. The general task of pattern analysis is to find and study general types of relations (for example clusters, rankings, principal components, correlations, classifications) in datasets. For many algorithms that solve these tasks, the data in raw representation have to be explicitly transformed into feature vector representations via a user-specified feature map: in contrast, kernel methods require only a user-specified kernel, i.e., a similarity function over all pairs of data points computed using inner products. The feature map in kernel machines is infinite dimensional but only requires a finite dimensional matrix from user-input according to the Representer theorem. Kernel machines are slow to compute for datasets larger than a couple of thousand examples without parallel processing.

Kernel methods owe their name to the use of kernel functions, which enable them to operate in a high-dimensional, implicit feature space without ever computing the coordinates of the data in that space, but rather by simply computing the inner products between the images of all pairs of data in the feature space. This operation is often computationally cheaper than the explicit computation of the coordinates. This approach is called the "kernel trick". Kernel functions have been introduced for sequence data, graphs, text, images, as well as vectors.

Algorithms capable of operating with kernels include the kernel perceptron, support-vector machines (SVM), Gaussian processes, principal components analysis (PCA), canonical correlation analysis, ridge regression, spectral clustering, linear adaptive filters and many others.

Most kernel algorithms are based on convex optimization or eigenproblems and are statistically well-founded. Typically, their statistical properties are analyzed using statistical learning theory (for example, using Rademacher complexity).